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Introduction.—Let dy(x) be a positive measure, of total mass one, on the interval
(a, b) of the real axis, and let N be a given positive integer. We say that
Tschebycheff quadrature is possible for N if there are numbers z;, x5, ..., 2n
lying interior to (a, b) such that

b N
fa f@)d¥(@) = 1/N X f(z) (1)

for every polynomial f(z) of degree £N. If Tschebycheff quadrature is possible
on a sequence {n;} 7 of values of N tending to infinity, we will say that the measure
dy(z) has property T on (a, b), and, in any event, the sequence {n,-}, finite or in-
finite, of values of N for which Tschebycheff quadrature is possible will be called the
T-sequence for dy(r).

Example 1: dy(z) = 7 (1 — z?)~Y2dz has property T on (—1, 1) since, in
this case, (1) is identical with Gauss-Jacobi quadrature. The T-sequence is simply
ny =.7(.7= 1} 27 )

Ezxample 2: dy(x) = dx does not have property T on (0, 1). This was proved
by S. Bernstein,! who later? showed that the T-sequence in this case is {1, 2, 3, 4,
56,7, 9}.

E:vample 3: For dy(z) = [[(a)]'z="e~*dx on (0, =), nothing is known
except® that the T-sequence contains N = 1, 2 and does not contain N for3 = N £
10, if ¢ = 1.

Example 4: For dy(x) = w~Y2%*dr on (— o, =), nothing is known except
that the T-sequence contains N = 1, 2, 3 and does not contain N for 3< N = 10.

The results of the present paper are first a simple necessary condition for a
measure to have property 7, second, an application of this condition to show that
the T-sequence of a measure on an infinite interval is, roughly, very ‘‘sparse,”
third, an application of the same condition to settle the cases of Examples 3 and 4,
showing in each case that property 7T is not present and exactly determining the 7-
sequences involved, and finally, some remarks about Bernstein’s method.
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It is the author’s conjecture that if a measure has property T then it has zero
mass outside of some finite interval, but as will be seen, our methods are not quite
strong enough to prove this.

Jensen’s Inequality.—Jensen’s inequality* asserts that if &, &, ..., £ are non-
negative, and if we define

agr = {zn; SVr}”f (T =1, 2’ . )
y=1

then s < ¢ implies o, = o,. Taking f(z) = 2" in (1),

b N
b= [ase) =N Dol =12, W, @
Suppose a = 0. If Tschebycheff quadrature is possible for N, then z, =2 a =2 0

(v =1, ..., N), and therefore
or = (Nu)H" r=1.,2 ..,N) 3)

is decreasing. Even if a < 0, however, we can apply Jensen’s inequality to
n 1yr
n={§@A} )
and deduce that the sequence

Tr = (Nllﬂf)llr (7' = 1) 2} ey [N/z]) (5)

decreases.
TaeoreM 1. Let {n,}"f be the T-sequence of a measure with moments u,(r =
0,1, ...). Then foreach fixedj(j = 1,2, ...) the sequence

Tr = (nﬂ-‘-Zr)l/f (T = 1; 2) Y [n1/2]) '(6)
decreases. If a = O, then actually,
or = (nil“f)”r (T =12 ..., n) (7)

decreases.

We now investigate the density of T-sequences. Let {n,} 1 be the T-sequence
of a measure dy(z) on (—», ). Let { 29,15, { 2¢; + 1} 5 be, respectively, the
subsequences of even and odd integers in {n,} Then, for each j, the sequence

Tr = (2p1ﬂ2r)ur (1‘ =12 ..., p])
decreases. Hence, in particular,
Tpj— Z7 Py

OF (2P jpap;—1) P%5—1 Z (2p jp2p;) V75,
Temporarily writing A\; = psp;, we have

N\ = (2p].)(Pj/l'j_l*—l))\j_lﬂjlﬂj—l. (8)
It is easy to see recursively that

A = ()T (9)
where the v; satisfy

Vi

2y



Vor. 47, 1961 MATHEMATICS: H. 8. WILF

Yt = (Zpk+1)(1’k+1l?k =Dy Pk+1/7%
7y =1 k=23, ...)

Now the solution of (10) is

k 1 1
log vit/? = 2, (— — — ) log (2p,)

N

=2 \P;1 2]
A 1
= 2 (= = =)logp, + 0(1) (k= ).
i=2 \Pjs1 Dy
Suppose i (—1— — l) logp; =< =
i=2 \Pj—1 Py ’ )

Then, log v:Y?* < B,
and (9) becomes

A S ENVPYE (=23, ..))
On the other hand,

Aj = papy = f z*?idy(x)

A
> { f _;X + f :} 2?idy(z)
> X% { | Ty f:}‘dtﬁ(x)

= XiF(X).

POMUAR _
Thus, F(X) ( X ) G=23...)
and therefore dy/(z) has zero mass outside of the finite interval

le] < epimn12m

Returning to the series (12), we have first

1 1 Ve
(—— - —) log p;1 = f log — dx
Pia Dy 1/75 x

and therefore, for any sequence p; we have
x 1 1 I/bx 1
E(—————)lo _Sf log - dz < .
= \pa 1, gPi1 = J g ar<®

Suppose there is an integer m such that

piépj—lm (.7=2’3;)
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(10)

1)

(12)

(13)

(14)

(15)
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Then,

k k
1 1 1 1

> (—— - ——) log p; = 2o (-*— - —> log pj1 +

=2 \Ps1 Py i=2 \pPj1  Pj

> (~ ~ —>1og~’i S0 + (m—1) 2 (— - —>logp,_1
i=2\Pj1 Py Py Py

P =2
=0(1) (k> =)
and the series converges. The example
p;zehi-t (=23, ...,

for which (12) is easily seen to diverge, shows that some restriction of the type (17)
is essential. The same argument can be applied to the odd subsequence of {n,}
with the identical result. We summarize with

TrEOREM 2. Let {2p ,} 5, {qu + 1} be the even and odd subsequences of the T-
sequence {n,}"f of a measure dy(x) which has positive mass outside of every finite
interval. Then the assertions

p; = pia” (G=23 ...) 7

q; = ¢ G=23...) (18)

are false for every fixed integer m. If dy(x) has zero mass on the negative real axvs then
actually

n; < njq" G=23...) 19)

18 false for every fixed integer m.
The Classical Measures.—With Theorem 1 we can now easily settle the classical
cases of the Laguerre and Hermite measures. Indeed, in the Laguerre case,

©

- (e + 1)
r = F —lf rta—1,.z = .
hence, by (3), the sequence

must decrease. But

oN-1 _ NT(a + N) }I/Nuv—n
- {r(axa FN ¥

which is less than unity as soon as
T'(a) S Tla+N—-1)
N “(a+ N — 1)¥-1
If « = 1, (20) holds as soon as N = 3.
In the Hermite case, the analogue of (20) is
@em — 1™
2m.

oN

~ AN%—N (N = ), (20)

1.3....2m — 3) < (21)
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if N = 2m, which holds form = 3, or N 2 6. For N odd, we find N = 7 by the
same method, and using the result of reference 3, conclude that Tschebycheff
quadrature is impossible for N = 4.
TaeoreM 3. The measures of Laguerre and Hermite do not have property T. 1If
a = 1 in the former case, the T-sequence is { 1, 2}, in the latter case, the T-sequence is
1,2, 3.
{ Remm}*ks on Bernstein’s Method.—If dy(z), (a, b) are given, let {¢n(x) }3’ be the
sequence of orthogonal polynomials thereby generated. If &, < £, < ... < &pn

are the zeros of ¢.(r) and Ay, Mg, ..., Aus, the associated Christoffel numbers for
Gauss-Jacobi quadrature, Bernstein’s criterion,? in the present terminology, is that
A = o(n™Y) (n— ») (22)

implies the absence of property 7. We remark that Bernstein gives the proof for
dy(z) = dz on (0, 1), but his argument is perfectly general. If this result is used in
conjunction with the estimates of Winston® for A, one can show that Hermite’s
measure does not have property 7, and that Laguerre’s, for « > 1 only, does not have
property T. No information is obtained about the exact nature of the T-sequences
because of the imprecision of known estimates for A,;. I would therefore regard
the methods of the preceding sections and those of Bernstein as being complemen-
tary in that the usefulness of the former is restricted to infinite intervals and that of
the latter to finite intervals, apparently. ‘
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